Abstract

The boost converter with a voltage multiplier cell allows the static gain extension by means of the switching capacitor technique, reducing the duty cycle needed to achieve the same voltage gain when compared to the conventional boost converter. However, the modeling of this converter is complex and requires the use of advanced techniques due to the resonant inductor. Thus, this paper aims to present a reduced-order model of this converter without the resonant energy exchange between the capacitors, so that the state-space averaging technique can be applied assuming small ripple in the state variables. In addition, this paper presents the design of a control system for the boost converter with a voltage multiplier cell. The adopted strategy employs an inner loop to control the input current and an outer loop for the output voltage regulation. Extensive analysis based on simulations and an experimental prototype demonstrate that the proposed modeling, although simplified, is sufficient for an adequate control system design, ensuring good voltage regulation, and fast transient responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call