Abstract

PurposeSynthetic MRI (SyMRI) enables to quantify brain tissue and morphometry. We aimed to investigate the WM and myelin alterations in patients with unilateral hippocampal sclerosis (HS) with SyMRI.MethodsAdult patients with isolated unilateral HS and age-matched control subjects (CSs) were included in this study. The SyMRI sequence QRAPMASTER in the coronal plane perpendicular to the hippocampi was obtained from the whole brain. Automatic segmentation of the whole brain was processed by SyMRI Diagnostic software (Version 11.2). Two neuroradiologists also performed quantitative analyses independently from symmetrical 14 ROIs placed in temporal and extratemporal WM, hippocampi, and amygdalae in both hemispheres.ResultsSixteen patients (F/M = 6/10, mean age = 32.5 ± 11.3 years; right/left HS: 8/8) and 10 CSs (F/M = 5/5, mean age = 30.7 ± 7 years) were included. Left HS patients had significantly lower myelin and WM volumes than CSs (p < .05). Myelin was reduced significantly in the ipsilateral temporal lobe of patients than CSs, greater in left HS (p < .05). Histopathological examination including luxol fast blue stain also revealed myelin pallor in all of 6 patients who were operated. Ipsilateral temporal pole and sub-insular WM had significantly reduced myelin than the corresponding contralateral regions in patients (p < .05). No significant difference was found in WM values. GM values were significantly lower in hippocampi in patients than CSs (p < .05).ConclusionSyMRI revealed myelin reduction in the ipsilateral temporal lobe and sub-insular WM of patients with HS. Whether this finding correlates with electrophysiological features and SyMRI could serve as lateralization of temporal lobe epilepsy need to be investigated.Supplementary InformationThe online version contains supplementary material available at 10.1007/s00234-021-02824-6.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.