Abstract

The majority of apoptotic cells in atherosclerotic lesions are macrophages. However, the pathogenic role of macrophage apoptosis in the development of atherosclerosis remains unclear. Elevated expression of Bax, one of the pivotal proapoptotic proteins of the Bcl-2 family, has been found in human atherosclerotic plaques. Activation of Bax also occurs in free cholesterol-loaded and oxysterol-treated mouse macrophages. In this study, we examined the effect of Bax deficiency in bone marrow-derived leukocytes on the development of atherosclerosis in low-density lipoprotein receptor-null (LDLR-/-) mice. Fourteen 8-week-old male LDLR-/- mice were lethally irradiated and reconstituted with either wild-type (WT) C57BL6 or Bax-null (Bax-/-) bone marrow. Three weeks later, the mice were challenged with a Western diet for 10 weeks. No differences were found in the plasma cholesterol level between the WT and Bax-/- group. However, quantitation of cross sections from proximal aorta revealed a 49.2% increase (P=0.0259) in the mean lesion area of the Bax-/- group compared with the WT group. A 53% decrease in apoptotic macrophages in the Bax-/- group was found by TUNEL staining (P<0.05). The reduction of apoptotic activity in macrophages stimulates atherosclerosis in LDLR-/- mice, which is consistent with the hypothesis that macrophage apoptosis suppresses the development of atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.