Abstract

Hydrodynamic instabilities are a major obstacle in the quest to achieve ignition as they cause preexisting capsule defects to grow and ultimately quench the fusion burn in experiments at the National Ignition Facility. Unstable growth at the ablation front has been dramatically reduced in implosions with "high-foot" drives as measured using x-ray radiography of modulations at the most dangerous wavelengths (Legendre mode numbers of 30-90). These growth reductions have helped to improve the performance of layered DT implosions reported by O. A. Hurricane et al. [Nature (London) 506, 343 (2014)], when compared to previous "low-foot" experiments, demonstrating the value of stabilizing ablation-front growth and providing directions for future ignition designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call