Abstract

To solve balance problem between flexibility and energy density for graphene-based fiber electrodes, graphene oxide (GO) with nanosheet size larger than 20μm and Mn3O4 nanocrystals with a size of about 5nm were used as assembled units, reduced graphene oxide (RGO)/Mn3O4 hybrid fibers with excellent flexibility and high capacitance were prepared by a simple and scalable wet-spinning approach and followed by treating in a solution of hydrazine hydrate, in which GO could be reduced into RGO, while Mn3O4 nanocrystals were maintained after hydrazine vapor reduction treatment. A suitable amount of Mn3O4 nanocrystals not only maintained the tensile strength and flexibility of the obtained fiber electrode, but also obviously improved its capacitance. RGO/Mn3O4-30 fiber electrode showed a maximum volumetric capacitance of 311Fcm−3 at a current density of 300mAcm−3 on the basis of maintaining the electrode good flexibility and mechanical strength. By intertwining two as-prepared RGO/Mn3O4-30 flexible hybrid fiber electrodes, flexible symmetric all-solid-state fiber supercapacitor was assembled by using PVA/H3PO4 as the gel electrolyte. The assembled device showed a maximum volumetric capacitance of 45.5Fcm−3 at a current density of 50mAcm−3, and remarkable flexibility and mechanical property to tolerate long-term and repeated bending. Moreover, the assembled device exhibited a maximum volumetric energy density of 4.05mWhcm−3 and a maximum volumetric power density of 268mWcm−3. When three flexible symmetric all-solid-state fiber supercapacitors were connected in series, the series device could be used to power a red light emission diode (LED) lamp after being fully charged, demonstrating its potential application as an efficient energy storage component for flexible electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.