Abstract

Abstract Organometal trihalide perovskite solar cells (PeSCs) have recently opened a new era for photovoltaics power sources via the tremendous increase in power conversion efficiency (PCE) in the past five years. The next achievement will occur when scalable and processable PeSCs are realized because of a fundamental understanding of the interfacial characteristics and perovskite crystallization in PeSCs. Here, we report solution-processed planar PeSCs with well-tailored functional graphene, successfully demonstrating excellent module PCEs of 10.0% and 8.1% for rigid and flexible substrates, respectively, with active-area of 10 cm 2 . Systematic investigations reveal that molecular-doped reduced graphene oxide with fluorine atoms (MFGO) exhibits fast charge-extraction ability and well-aligned energetic interface characteristic due to its intrinsic structure, and MFGO promotes perovskite crystallization and orientation with minimized stoichiometric defects. The solution-processable graphene can function not only as an efficient and stable interlayer but also as an inducer of the crystallization of the perovskite layer in simplified device architectures without a complex process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.