Abstract

Integrins mediate interactions between cells and extracellular matrix proteins that modulate growth factor signaling. Focal adhesion kinase (FAK) is a key multifunctional integrin pathway protein. We recently reported that disruption of FAK impairs insulin-mediated glycogen synthesis in hepatocytes. To test the hypothesis that FAK regulates skeletal muscle insulin action, we reduced FAK expression in L6 myotubes using FAK antisense. In untransfected myotubes, insulin stimulated both FAK tyrosine phosphorylation and kinase activity. Cells treated with antisense FAK showed 78 and 53% reductions in FAK mRNA and FAK protein, respectively, whereas insulin receptor substrate 1/2 and paxillin abundance were unaffected. Insulin-stimulated U-(14)C-glucose incorporation into glycogen was abolished by FAK antisense, and 2-deoxy-glucose uptake and glucose transporter 4 (GLUT4) translocation were both markedly attenuated. Antisense FAK did not alter GLUT1 or GLUT3 protein abundance. Immunofluorescence staining showed decreased FAK Tyr(397) phosphorylation and reduced actin stress fibers. Thus, in skeletal myotubes, FAK regulates the insulin-mediated cytoskeletal rearrangement essential for normal glucose transport and glycogen synthesis. Integrin signaling may play an important regulatory role in muscle insulin action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.