Abstract

To ensure reliable and efficient operation of fuel cell systems, it is important to monitor them online. However, placing sensors inside the fuel cell is often challenging, so virtual sensing using an efficient state observer is used in this study. Detecting local internal phenomena, such as reactants’ starvation, membrane dryout/flooding, and nitrogen accumulation, requires knowledge of the spatial distribution of internal states. Lumped-parameter models are not suitable for this, as they use a single variable to describe parameters such as hydrogen concentration. Instead, a high-order distributed-parameter fuel cell model is used to predict the spatial profiles of various internal states. An observer algorithm is employed to correct the predicted quantities using a few measurements taken at the system boundary. This update step only considers dominant dynamics from a reduced model to adjust all system states accordingly, making it computationally efficient and robust. The observer algorithm’s performance was verified against a high-fidelity model through detailed simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.