Abstract

Corticospinal drive during walking is reduced in older adults compared with young adults, but it is not clear how this decrease might compromise one's ability to adjust stepping, particularly during visuomotor adaptation. We hypothesize that age-related changes in corticospinal drive could predict differences in older adults' step length and step time adjustments in response to visual perturbations compared with younger adults. Healthy young (n = 21; age 18-33 yr) and older adults (n = 20; age 68-80 yr) were tested with a treadmill task, incorporating visual feedback of the foot position and stepping targets in real-time. During adaptation, the visuomotor gain was reduced on one side, causing the foot cursor and step targets to move slower on that side of the screen (i.e., split-visuomotor adaptation). Corticospinal drive was quantified by coherence between electromyographic signals in the beta-gamma frequency band (15-45 Hz). The results showed that 1) older adults adapted to visuomotor perturbations during walking, with a similar reduction in error asymmetry compared with younger adults; 2) however, older adults showed reduced adaptation in step time symmetry, despite demonstrating similar adaptation in step length asymmetry compared with younger adults; and 3) smaller overall changes in step time asymmetry was associated with reduced corticospinal drive to the tibialis anterior in the slow leg during split-visuomotor adaptation. These findings suggest that changes in corticospinal drive may affect older adults' control of step timing in response to visual challenges. This could be important for safe navigation when walking in different environments or dealing with unexpected circumstances.NEW & NOTEWORTHY Corticospinal input is essential for visually guided walking, especially when the walking pattern must be modified to accurately step on safe locations. Age-related changes in corticospinal drive are associated with inflexible step time, which necessitates different locomotor adaptation strategies in older adults.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call