Abstract

BackgroundChildren exposed to gestational diabetes mellitus (GDM) in utero are at increased risk of neurodevelopmental difficulties, including autism and impaired motor control. However, the underlying neurophysiology is unknown. MethodsUsing transcranial magnetic stimulation, we assessed cortical excitability, long-term depression (LTD)-like neuroplasticity in 45 GDM-exposed and 12 control children aged 11–13 years. Data were analysed against salivary cortisol and maternal diabetes severity and treatment (insulin [N = 22] or metformin [N = 23]) during pregnancy. FindingsGDM-exposed children had reduced cortical excitability (p = .003), LTD-like neuroplasticity (p = .005), and salivary cortisol (p < .001) when compared with control children. Higher maternal insulin resistance (IR) before and during GDM treatment was associated with a blunted neuroplastic response in children (p = .014) and this was not accounted for by maternal BMI. Additional maternal and neonatal measures, including fasting plasma glucose and inflammatory markers, predicted neurophysiological outcomes. The metformin and insulin treatment groups had similar outcomes. InterpretationThese results suggest that GDM can contribute to subtle differences in child neurophysiology, and possibly cortisol secretion, persisting into early adolescence. Importantly, these effects appear to occur during second trimester, before pharmacologic treatment typically commences, and can be predicted by maternal insulin resistance. Therefore, earlier detection and treatment of GDM may be warranted. Metformin appears to be safe for these aspects of neurodevelopment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call