Abstract

Hybrid immunity to SARS-CoV-2, resulting from both vaccination and natural infection, remains insufficiently understood in paediatric populations, despite increasing rates of breakthrough infections among vaccinated children. We conducted a prospective longitudinal study to investigate the magnitude, specificity, and cytokine profile of antigen-specific T cell responses elicited by breakthrough SARS-CoV-2 infection in a cohort of mRNA-vaccinated children (n=29) aged 5-11. This longitudinal analysis involved six distinct time points spanning a 16-month period post-vaccination, during which we analysed a total of 159 blood samples. All children who were followed for at least 12months (n=26) experienced a breakthrough infection. We conducted cytokine release assays using minimal blood samples, and we verified the cellular origin of these responses through intracellular cytokine staining. After breakthrough infection, children who had received mRNA vaccines showed enhanced Th1 responses specific to Spike peptides. Additionally, their Spike-specific T cells exhibited a distinctive enrichment of CD4+ IFN-γ+IL10+ cells, a characteristic akin to adults with hybrid immunity. Importantly, vaccination did not impede the development of multi-specific T cell responses targeting Membrane, Nucleoprotein, and ORF3a/7/8 antigens. Children, previously primed with a Spike-based mRNA vaccine and experiencing either symptomatic or asymptomatic breakthrough infection, retained the ability to enhance and diversify Th1/IL-10 antigen-specific T cell responses against multiple SARS-CoV-2 proteins. These findings mirror characteristics associated with hybrid cellular immunity in adults, known to confer resistance against severe COVID-19. This study was funded by the National Medical Research Council (NMRC) Singapore (COVID19RF-0019, MOH-000019, MOH-000535, OFLCG19May-0034 and MOH-OFYIRG19nov-0002).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.