Abstract

Although vasovagal syncope (VVS) is a common clinical condition, the underlying pathophysiology is not fully understood. A decrease in cardiac output has recently been suggested as a factor in orthostatic VVS. The aim was to investigate compensatory mechanisms to maintain central blood volume and venous return during hypovolemic stress in women with VVS. Fourteen VVS women (25.7 ± 5.0 yr) and 15 matched controls (22.8 ± 3.2 yr) were investigated. Single-step and graded lower body negative pressure (LBNP) to presyncope were used to create hypovolemic stress. Peripheral mobilization of venous blood from the arm (capacitance response and net capillary fluid absorption) and lower limb blood pooling (calf capacitance response) were evaluated using a volumetric technique. Cardiovascular responses and plasma norepinephrine (P-NE) were measured. Resting P-NE was elevated in VVS women (P < 0.01). Despite a similar hypovolemic stimulus, the increase in P-NE was blunted (P < 0.01) and the maximal percent increase in total peripheral resistance was reduced (P < 0.05) during graded LBNP in VVS women. The arm capacitance response was slower (P < 0.05) and reduced in VVS women at higher levels of LBNP (P < 0.05). Capillary fluid absorption from extra- to intravascular space was reduced by ∼40% in VVS women (P < 0.05). Accordingly, the reduction in cardiac output was more pronounced (P < 0.05). In conclusion, in VVS women, mobilization of peripheral venous blood and net fluid absorption from tissue to blood during hypovolemic stress were decreased partly as a result of an attenuated vasoconstrictor response. This may seriously impede maintenance of cardiac output during hypovolemic stress and could contribute to the pathogenesis of VVS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.