Abstract

In this article, a pulsewidth modulation (PWM) scheme for three-level full-SiC uninterruptible power supplies is developed to achieve a high power density. Two key passive components are selected for size reduction of the ac–ac stage: common-mode (CM) EMI filter, and dc-link capacitors. To reduce the CM noise, a new vector combination is proposed based on synchronous switching among three-phases. The proposed combinations align CM voltage (CMV) to be a single pulse per switching period. Owing to the simple shape, CMV cancellation between a three-level rectifier and inverter can be maximally utilized. A transition between the three combinations can control the drift of neutral point voltage. An equivalent carrier-based implementation is developed. Second, a simple algorithm to compensate neutral point voltage fluctuation is proposed both for differential mode (DM) and CM output voltage. Low-order harmonics on three-phase currents and an additional high-frequency CM noise by misaligned switching instant can be eliminated. The proposed compensation can be implemented by a simple correction on carrier slopes and injected zero-sequence voltage. The proposed PWM scheme is verified with 20-kW full-SiC UPS switching at 60 kHz with 140 μ F dc-link capacitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call