Abstract

NMDA receptors (NMDAR) contribute to neuronal development throughout the CNS. However, their mode(s) of activation preceding synaptic maturation is unclear, as they are not co-localized with alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPARs) which normally provide sufficient depolarization to relieve voltage-dependent blockade by Mg(2+). We used cerebellar granule neurons (CGNs) cultured at a near-physiological KCl concentration to examine maturation-dependent changes in NMDAR responses. In contrast, most studies use KCl-supplemented medium to promote survival. At 2-4 days in vitro CGNs: (i) express developmental markers resembling the in vivo migratory phenotype; (ii) maintain a basal amount of calcium responsive element-binding protein phosphorylation that requires NMDARs and calcium/calmodulin-dependent kinases, but not AMPARs; (iii) exhibit NMDA-mediated Ca(2+) influx not effectively blocked by ambient Mg(2+) (0.75 mM) or AMPARs; (iv) maintain a more depolarized resting membrane potential and increased resistance compared to synaptically-connected CGNs. Moreover, migrating CGNs in explant cultures demonstrate NMDA-mediated Ca(2+) influx not effectively blocked by 0.75 mM Mg(2+), and NMDAR but not AMPAR antagonists slow migration. These data suggest the biophysical properties of immature CGNs render NMDARs less sensitive to Mg(2+) blockade, enhancing the likelihood of activation in the absence of AMPAR depolarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.