Abstract
NMDA receptor subunit composition varies throughout the brain, providing molecular diversity in NMDA receptor function. The NR2 subunits (NR2A-D) in large part dictate the distinct functional properties of NMDA receptors and differentially regulate receptor trafficking. Although the NR2C subunit is highly enriched in cerebellar granule cells and plays a unique role in cerebellar function, little is known about NR2C-specific regulation of NMDA receptors. Here, we demonstrate that PKB/Akt directly phosphorylates NR2C on serine 1096 (S1096). In addition, we identify 14-3-3epsilon as an NR2C interactor, whose binding is dependent on S1096 phosphorylation. Both growth factor stimulation and NMDA receptor activity lead to a robust increase in both phosphorylation of NR2C on S1096 and surface expression of cerebellar NMDA receptors. Finally, we find that NR2C expression, unlike NR2A and NR2B, supports neuronal survival. Thus, our data provide a direct mechanistic link between growth factor stimulation and regulation of cerebellar NMDA receptors.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.