Abstract

Episodic ataxia type 2 (EA2) is an autosomal dominantly inherited neurological disorder. Patients have CACNA1A gene mutations resulting in truncation or single amino acid changes in the pore-forming subunit of Ca(v)2.1 (P/Q-type) Ca(2+) channels. These neuronal channels mediate synaptic neurotransmitter release. EA2 symptoms are thought to result from disturbed neurotransmission at cerebellar and neuromuscular synapses, caused by loss-of-function of Ca(v)2.1 channels. Heterozygous leaner (Ln/wt) mice, carrying a Cacna1a truncation mutation, as well as heterozygous Ca(v)2.1 null-mutant (KO/wt) mice may model synaptic aspects of EA2. We studied Ca(v)2.1-mediated acetylcholine (ACh) release at their neuromuscular junctions (NMJs) ex vivo. KO/wt mice did not show any ACh release abnormalities, not even at older age. However, Ln/wt mice had approximately 25% reduced spontaneous uniquantal ACh release and approximately 10% reduced nerve-stimulation evoked release, compared with wild-type. EA2 is treated with acetazolamide (AZA), but the pharmacotherapeutic mechanism is unknown. We tested the possibility of a direct influence on (mutant) presynaptic Ca(v)2.1 channel function by studying the acute effect of 50 muM AZA on ACh release at ex vivo NMJs of wild-type, KO/wt, and Ln/wt mice. No changes were found in any of the release parameters. Our results indicate that Ln-mutated Ca(v)2.1 channels at Ln/wt NMJs are either normally inserted in the presynaptic membrane but have reduced function, or that they inhibit wild-type channels by hampering their expression, trafficking, membrane insertion and/or function. In this respect Ln/wt NMJs may model EA2 synapses. Furthermore, AZA does not exert an acute, direct influence on the function of presynaptic (mutant) Ca(v)2.1 channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.