Abstract

Redox-responsive nanogels (NGs) can encapsulate appropriate amount of active ingredient, deliver drugs to the target cells by the enhanced permeability and retention (EPR) effect or specific targeted groups, and finally, rapidly release the loaded drug at the site of action when the redox-stimulus is applied. These programmed site-specific drug delivery features cause unique drug delivery control in the stimuli-responsive NGs and lead to superior in vitro and/or in vivo anti-cancer efficacy. Because of the high difference between the concentration of oxidative species in normal and tumour tissues, which is very important for biomedical applications particularly cancer therapy, the redox-responsive NGs have received much attention among various stimuli-responsive NGs. Thus, in this review, we attempt to summarise recent efforts to prepare innovative redox-responsive NGs and discuss recent advances in the interface between drug delivery and stimuli-responsive NGs that are able to control drug biodistribution in response to specific stimuli, with a particular emphasis on their design, drug release performance and therapeutic benefits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.