Abstract

Hydrogenases are enzymes that can potentially be used in bioelectrical devices or for biological hydrogen production, the most studied of which are the [NiFe] type. Most [NiFe] hydrogenases are inactivated by oxygen and the few known O2-tolerant enzymes are hydrogen-uptake enzymes, unsuitable for hydrogen production, due to strong product inhibition. In contrast, the [NiFeSe] hydrogenases, where a selenocysteine is bound to the nickel, are very attractive alternatives because of their high hydrogen production activity and fast reactivation after O2 exposure. Here we report five high-resolution crystallographic 3D structures of the soluble form of the [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough in three different redox states (oxidized as-isolated, H2-reduced and air re-oxidized), which revealed the structural changes that take place at the active site during enzyme reduction and re-oxidation. The results provide new insights into the pathways of O2 inactivation in [NiFe], and in particular [NiFeSe], hydrogenases. In addition, they suggest that different enzymes may display different oxidized states upon exposure to O2, which are probably determined by the protein structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.