Abstract

The development of alcoholic liver disease (ALD) is a complex process involving both parenchymal and nonparenchymal cells resident in the liver. Although the mechanisms for ALD are not completely understood, it is clear that increased oxidative stress, and activation of the innate immune system are essential elements in the pathophysiology of ALD. Oxidative stress from ethanol exposure results from increased generation of reactive oxygen species and decreased hepatocellular antioxidant activity, including changes in the thioredoxin/peroxiredoxin family of proteins. Both cellular and circulating components of the innate immune system are activated by exposure to ethanol. For example, ethanol exposure enhances toll-like receptor-4 (TLR-4)-dependent cytokine expression by Kupffer cells, likely due, at least in part, to dysregulation of redox signaling. Similarly, complement activation in response to ethanol leads to increased production of the anaphylatoxins, C3a and C5a, and activation C3a receptor and C5a receptor. Complement activation thus contributes to increased inflammatory cytokine production and can influence redox signaling. Here we will review recent progress in understanding the interactions between oxidative stress and innate immunity in ALD. These data illustrate that ethanol-induced oxidative stress and activation of the innate immune system interact dynamically during ethanol exposure, exacerbating ethanol-induced liver injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.