Abstract
Specific cellular uptake and sufficient drug release in tumor tissues are important for effective cancer therapy. Hyaluronic acid (HA), a skeleton material, could specifically bind to cluster determinant 44 (CD44) receptors highly expressed on the surface of tumor cells to realize active targeting. Cystamine (cys) is sensitive highly reductive environment inside tumor cells and was used as a connecting arm to connect docosahexaenoic acid (DHA) and chlorin e6 (Ce6) to the HA skeleton to obtain redox-sensitive polymer HA-cys-DHA/Ce6 (CHD). Nanoparticles were fabricated and loaded with chemotherapeutic drug docetaxel (DTX) by physical encapsulation. The prepared nanoparticles had significantly increased uptake by MCF-7 cells that overexpressed CD44 receptors, and DTX was effectively released at high reducing condition. Compared with mono-photodynamic therapy (PDT) or mono-chemotherapy, the prepared nanoparticles exhibited superior anti-tumor effect by inhibiting microtubule depolymerization, blocking cell cycle and generating reactive oxygen species (ROS). In vivo anti-tumor experiments proved that DTX/CHD nanoparticles had the best antitumor response versus DTX and CHD nanoparticles under near-infrared (NIR) irradiation. These studies revealed that redox-responsive DTX-loaded CHD nanoparticles held great potential for the treatment of breast cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.