Abstract

Simulations of a model ionic liquid, [dmim][PF(6)] (dimethylimidazolium hexafluorophosphate), containing solute ions of different sizes and shapes have been used to investigate the changes in redox potentials of and screening around solute ions of different sizes and shapes. The effective solute size of spherical ions increases with the actual solute size although more slowly than expected. The effective solute size of tetrahedral or square planar ions varies little with actual ligand size. These results are clarified by reference to the charge density in the solvent around the ions, which is also used to calculate the potential within the solvent. Screening is essentially complete within 1 nm of the solute ion although charge density oscillations propagate further into the liquid. The results are compared to theoretical models and the implications for experiments are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.