Abstract

ABSTRACTThe effects of the flooding and initial Eh of sediments on the sorption of uranium onto the sediments were analysed by flooding and static experiments. The changes in uranium species with Eh and kinetic and thermodynamic characteristics of the uranium sorption onto the sediments were investigated. The flooding experiment indicates that the initial Eh of the sediment gradually decreased with the increase in flooding time. Based on the redox potential in the flooding experiment, simulation results obtained using the geochemical simulation software PHREEQC show that the concentration of U (VI) decreased. In contrast, the concentrations of U (III), U (IV), and U (V) gradually increased. The pseudo-second-order kinetic model well fitted the experimental data, which shows that the sorption was mainly chemical sorption. The thermodynamic parameters suggest that the entropy and enthalpy under the used conditions were positive and that ΔGθ was negative. A thermodynamic analysis shows that the sorption was endothermic and spontaneous. These results are useful for the understanding of the sorption mechanism and migration of uranium onto the sediment under different initial sediment redox potentials and provide a good theoretical foundation for radioactive pollution remediation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.