Abstract
Bioreducible polymers have appeared as the ideal drug carriers for tumor therapy due to their properties of high stability in extracellular circulation and rapid drug release in intracellular reducing environment. Recently, the diselenide bond has emerged as a new reduction-sensitive linkage. In this work, the amphiphilic poly(ethylene glycol)-b-poly(L-lactide) containing diselenide bond has been synthesized and used to load anti-tumor drug, docetaxel (DTX), to form the redox micelles. It was found that the redox micelles showed a rapid response to glutataione (GSH), which resulted in a fast release of DTX in the presence of GSH. In contrast, <40% of DTX was released from the micelles within 72h under the normal condition (absence of GSH). The DTX-loaded redox micelles showed the significant inhibition effect to MCF-7 cells, and the cytotoxicity was dependent on the intracellular GSH concentrations. Moreover, considering the potentially clinical applications of the micelles through intravenous injection, the blood compatibility was also studied by the hemolysis analysis, activated partial thromboplastin time, prothrombin time and thromboelastography assays. These results confirmed that the redox micelles showed good blood safety, suggesting a potential application in tumor therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.