Abstract

Persistent radicals can hold their unpaired electrons even under conditions where they accumulate, leading to the unique characteristics of radical ensembles with open-shell structures and their molecular properties, such as magneticity, radical trapping, catalysis, charge storage, and electrical conductivity. The molecules also display fast, reversible redox reactions, which have attracted particular attention for energy conversion and storage devices. This paper reviews the electrochemical aspects of persistent radicals and the corresponding macromolecules, radical polymers. Radical structures and their redox reactions are introduced, focusing on redox potentials, bistability, and kinetic constants for electrode reactions and electron self-exchange reactions. Unique charge transport and storage properties are also observed with the accumulated form of redox sites in radical polymers. The radical molecules have potential electrochemical applications, including in rechargeable batteries, redox flow cells, photovoltaics, diodes, and transistors, and in catalysts, which are reviewed in the last part of this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call