Abstract
Inflammatory bowel disease (IBD) is associated with oxidative stress and redox signaling disruption. It is recently reported that proautophagic autophagy/beclin-1 regulator 1 (AMBRA1) is a positive modulator of the NF-κB pathway that promotes intestinal inflammation. However, its effect on intestinal redox state and whether AMBRA1 is regulated by oxidative stress remain unknown. In this study, it is found that AMBRA1 functions as a pro-oxidative factor that increases oxidative stress in intestinal epithelial cells (IECs) in vitro and in vivo. Mechanistically, the N-terminal F1 domain is required for AMBRA1 to competitively interact with the N-terminal domain of NRF2, thereby antagonizing the interaction between deubiquitinating protein 3 (DUB3) and NRF2, suppressing DUB3-mediated NRF2 deubiquitination, and leading to NRF2 degradation. In response to H2O2 stimulation, the interaction between AMBRA1 and ubiquitin-specific protease 7 (USP7) is enhanced, facilitating USP7 to deubiquitinate AMBRA1 at K83 and K86 and stabilize AMBRA1. Notably, the USP7 inhibitor, P5091, inhibits oxidative stress and colitis in vivo. Elevated AMBRA1 expression in inflamed colon tissues from ulcerative colitis patients is negatively correlated with decreased NRF2 protein levels. Overall, this study identifies AMBRA1 as a pro-oxidative factor in IECs and provides a redox-modulating therapeutic strategy for targeting USP7/AMBRA1 in IBD.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have