Abstract
Variations of the redox status is shown to inhibit the transport activity of tonoplast proton pumps at different stages of ontogenesis and under the conditions of hyperosmotic stress. However, the activity of H+-ATPase increased by 60% under hypoosmotic stress in the presence of GSH. The influence of nitric oxide on the transport activity of tonoplast proton pumps also depended on the redox status. In the case of change of the redox status, stimulating effect of nitric oxide turned inhibitory, except for simultaneous application of hypoosmotic stress and nitric oxide. In this case, stimulation of both proton pumps was observed and the activity of H+-ATPase increased in the presence of GSH, though the activity of H+-PPase increased in the presence of GSSG. This may explain the necessity of the presence in the vacuolar membrane of two proton pumps having similar functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.