Abstract
Organic dyes hold promise as inexpensive electrochemically-active building blocks for new renewable energy technologies such as redox-flow batteries and dye-sensitised solar cells, especially if they display high oxidation and/or low reduction potentials in cheap, non-flammable solvents such as water or protic ionic liquids. Systematic computational and experimental characterisation of a representative selection of acidic and basic dyes in buffered aqueous solutions and propylammonium formate confirm that quinoid-type mechanisms impart electrochemical reversibility for the majority of systems investigated, including quinones, fused tricyclic heteroaromatics, indigo carmine and some aromatic nitrogenous species. Conversely, systems that generate longlived radical intermediates - arylmethanes, hydroquinones at high pH, azocyclic systems - tend to display irreversible electrochemistry, likely undergoing ring-opening, dimerisation and/or disproportionation reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.