Abstract

We present herein the synthesis, characterization and complexation of ferrocenyl-substituted MIIs (mesoionic imines) and their metal complexes. In the free MIIs, strong hydrogen bonding interactions are observed between the imine-N and the C-H bonds of the ferrocenyl substituents both in the solid state and in solution. The influence of this hydrogen bonding is so strong that complexation of the MIIs with [IrCp*Cl2]2 yields unique six-membered iridacycles via C-H-activation of the corresponding C-H-site at the Fc-substituent and not the Ph-substituent. This result is in contrast to previous reports in which always a preferential C-H activation at the phenyl substituent is observed in competitive reactions in the presence of ferrocenyl substituents. The corresponding Ir complexes formed after in-situ halide exchange reaction exist in either [Ir-I] contact or as [Ir]+I- solvent separated ion-pairs depending on the solvent polarity. The iodide coordinated and solvent separated ion-pairs display drastically different physical properties. The TEP (Tolman-electronic-parameter) of these ligands was determined and lines up with previously reported MII-ligands. The redox properties were investigated by a combination of electrochemical and spectroelectrochemical methods. We show here how non-covalent interactions can have a drastic influence on the physical and chemical properties of these new class of compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call