Abstract

Aldose reductase (AR) reduces cytotoxic aldehydes and glutathione conjugates of aldehydes derived from lipid peroxidation. Its inhibition has been shown to increase oxidative injury and abolish the late phase of ischemic preconditioning. However, the mechanisms by which ischemia regulates AR activity remain unclear. Herein, we report that rat hearts subjected to ischemia, in situ or ex vivo, display a 2-4-fold increase in AR activity. The AR activity was not further enhanced by reperfusion. Activation increased Vmax of the enzyme without affecting the Km and decreased the sensitivity of the enzyme to inhibition by sorbinil. Enzyme activation could be prevented by pretreating the hearts with the radical scavenging thiol, N-(2-mercaptoproprionyl)glycine or the superoxide dismutase mimetic, Tiron, or by treating homogenates with dithiothreitol. In vitro, the recombinant enzyme was activated upon treatment with H2O2 and the activated, but not the native enzyme, formed a covalent adduct with the sulfenic acid-specific reagent dimedone. The enzyme activity in the ischemic, but not the nonischemic heart homogenates was inhibited by dimedone. Separation of proteins from hearts subjected to coronary occlusion by two-dimensional electrophoresis and subsequent matrix-assisted laser desorption ionization time-of-flight/mass spectrometry analysis revealed the formation of sulfenic acids at Cys-298 and Cys-303. These data indicate that reactive oxygen species formed in the ischemic heart activate AR by modifying its cysteine residues to sulfenic acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.