Abstract

Artificial Intelligence (AI) is increasingly incorporated into the cloud business in order to improve the functionality (e.g., accuracy) of the service. The adoption of AI as a cloud service raises serious privacy concerns in applications where the risk of data leakage is not acceptable. Examples of such applications include scenarios where clients hold potentially sensitive private information such as medical records, financial data, and/or location. This article proposes ReDCrypt, the first reconfigurable hardware-accelerated framework that empowers privacy-preserving inference of deep learning models in cloud servers. ReDCrypt is well-suited for streaming (a.k.a., real-time AI) settings where clients need to dynamically analyze their data as it is collected over time without having to queue the samples to meet a certain batch size. Unlike prior work, ReDCrypt neither requires to change how AI models are trained nor relies on two non-colluding servers to perform. The privacy-preserving computation in ReDCrypt is executed using Yao’s Garbled Circuit (GC) protocol. We break down the deep learning inference task into two phases: (i) privacy-insensitive (local) computation, and (ii) privacy-sensitive (interactive) computation. We devise a high-throughput and power-efficient implementation of GC protocol on FPGA for the privacy-sensitive phase. ReDCrypt’s accompanying API provides support for seamless integration of ReDCrypt into any deep learning framework. Proof-of-concept evaluations for different DL applications demonstrate up to 57-fold higher throughput per core compared to the best prior solution with no drop in the accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call