Abstract

Light-mediated polymer cross-linking is frequently employed for the preparation of hydrogels for biomedical applications. However, most photopolymerization processes require activation by UV light or short wavelength visible light, which are highly absorbed by skin and tissue, limiting their uses in transdermal initiation. Herein, we introduce red light-enabled oxime ligation by the in situ photogeneration of aldehydes, which rapidly react with hydroxylamines. We demonstrate efficient polymer cross-linking behind a dermal tissue model by red light initiation. Optimization of the photopolymerization conditions allows for 3D encapsulation of human foreskin fibroblasts with good cell viability postencapsulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.