Abstract

In this study, synthesis of novel binary chitosan-SnO2 nanocomposites is reported. Different physical and chemical techniques were used to characterize and analyze the characteristics of the chitosan-SnO2 nanocomposites as photocatalysts. The prepared novel photocatalysts were used to degrade the model dyes such as methyl orange (MO) and rhodamine B (RhB) under different wavelengths (254, 310 and 365nm) of UV light. The photocatalytic degradation results suggest that the prepared binary chitosan-SnO2 (50:50) nanocomposite shows superior degradation efficiency compared with pure SnO2 and binary chitosan-SnO2 (75:25) nanocomposite owing to its high crystallinity, high surface area, and small particle size. It was also observed that chitosan-SnO2 (50:50) nanocomposite under different wavelengths (254nm, 310nm, and 365nm) of UV light showed highest photocatalytic degradation of methyl orange and rhodamine B at 365nm irradiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.