Abstract

BackgroundTransplantation of isolated islets is a promising treatment for diabetes. Red ginseng (RG) is steamed ginseng and has been reported to enhance insulin secretion–stimulating and anti-apoptotic activities in pancreatic β-cells. In this study, we examined the hypothesis that pre-operative RG treatment enhances islet cell function and anti-apoptosis and investigated whether RG improves islet engraftment by transplant of a marginal mass of syngeneic islets pretreated with RG in diabetic mice. MethodsBalb/c mice were randomly divided into 2 groups, and 1 group was administered RG (400 mg/kg/day orally) for 7 days before islet isolation. In vitro islet viability and function were assessed. After cytokine treatment, cell viability, function, and apoptosis of islet cells were analyzed. Furthermore, we studied the effects of RG in a syngeneic islet graft model. A marginal mass of syngeneic mouse islets was transplanted into diabetic hosts. ResultsIslet pretreatment with RG showed 1.4-fold higher glucose-induced insulin secretion than did control islets. RG pretreatment upregulated B-cell lymphoma 2 (Bcl-2) expression and downregulated Bcl-associated X protein (BAX), caspase-3, and inducible nitric oxide synthase (iNOS) expression. Glucose-induced insulin release, NO, and apoptosis were significantly improved in RG-pretreated islets compared with cytokine-treated islets. RG-pretreated mice exhibited improved marginal mass islet graft survival compared with controls. ConclusionsThese results suggest that pre-operative RG administration enhanced islet function before transplantation and attenuated cytokine-induced damage associated with apoptosis. These studies indicate that inhibition of apoptosis by RG significantly improved islet cell and graft function after isolation and transplantation, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.