Abstract
In this study, a novel red-emitting Mn4+ doped Li2MgSn2O6 (Li2MgSn2O6:Mn4+) phosphors were successfully synthesized using a simple solid-state reaction method. XRD patterns indicated the replacement of Mn4+ ions with Sn4+ ions in the [SnO6] octahedrons site of the Li2MgSn2O6 lattice, and XPS spectra confirmed the Mn4+ oxidation state. Excited at 323 nm and 480 nm, the phosphors exhibited a strong red emission band peaking at 659 nm, attributed to the 2E → 4A2 transition of Mn4+ ions. Notably, the highest PL intensity was found in the Li2MgSn2O6:0.3%Mn4+ sample annealed at 1000 °C. These phosphors, with a particle size of 1.0 μm, possess a long lifetime of 0.176 ms, high activation energy of 0.335 eV, excellent color purity of 99.9%, and good internal and external quantum efficiency of 44.5% and 24.1%, respectively. Furthermore, an LED coated with Li2MgSn2O6:0.3%Mn4+ phosphor on a 365 nm NUV LED chip showed strong emission matching the absorption spectrum of the red phytochrome. Therefore, these results indicated that the synthesized Li2MgSn2O6:Mn4+ phosphors could be used as red-emitting materials for plant growth LED applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have