Abstract

Investigating effective fluorescence strategies for real-time monitoring of dipicolinic acid (DPA) is of paramount importance in safeguarding human health. Herein, we present the design of a desirable red-emissive carbon nanostructure anchoring a molecularly imprinted Er-BTC MOF as a fluorescence biosensor for the visual determination of DPA. DPA is a biomarker of Bacillus anthracis, a subcategory of serious infectious diseases and bioweapons. We introduce a paper test strip sensitized with the aforementioned nanostructure, which is integrated with online UV excitation and smartphone digital imaging, resulting in a DPA signal-off sensing platform. The proposed fluorometric visual paper-based biosensor demonstrates wide linear ranges for DPA (10-125 μM) with a LOQ and LOD of 4.32 and 1.28 μM, respectively. The designed platform exhibits impressive emission properties and adaptable surface functional groups, which confirm its desirable selective sensing capabilities against other biological molecules and DPA isomers. As a proof of concept, DPA monitoring is successfully applied to real samples of tap water and urine. This integrated selective paper-based nano-biosensor, coupled with smartphone signal recording, holds great promise for state-of-the-art practical applications including fluorometric/colorimetric detection in healthcare and environmental monitoring, food safety analysis, and point-of-care testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.