Abstract

Red claw crayfish Cherax quadricarinatus has emerged as a highly significant and suitable species to be raised in integrated rice–aquatic animal farming systems. To optimize an integrated aquaculture and agriculture (IAA) system and ensure sustainable utilization and development of land resources, an IAA system combining rice cultivation with red claw crayfish culture was implemented to assess the impacts of rice–red claw crayfish co-culturing on the dynamics and assembly of bacterial communities in paddy soils. We established two experimental groups, each with eight replicates. We utilized 16S rRNA Illumina high-throughput sequencing to access the bacterial community composition and assembly in paddy soils. Red claw crayfish C. quadricarinatus cultivation did not significantly affect the alpha diversity of the bacterial community in the paddy field, but it obviously increased the relative abundances of the phyla Acidobacteriota and Pseudomonadota involved in organic matter degradation and nitrogen, phosphorus, and carbon cycling. Red claw crayfish cultivation could lead to more complex bacterial communities, increased bacterial resistance to disturbances, the promotion of niche differentiation, and increased competition intensity between bacterial communities during the mid-cultivation period. Nitrogen emerged as a critical factor influencing the bacterial community composition in paddy soil during the culture period, and the red claw crayfish cultivation affected the bacterial community by altering the ammonia concentration in the paddy soil. As the culture progressed, the assembly of the bacterial community in the paddy soil was predominantly driven by stochastic processes, and red claw crayfish cultivation accelerated the evolution of the bacterial community assembly towards a stochastic process. Our study offers valuable insights into the dynamic changes occurring in the composition and assembly of bacterial communities in paddy soils in response to red claw crayfish cultivation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.