Abstract

Pediatric ischemic stroke is a poorly understood, yet clinically important, problem. The sole approved treatment for acute stroke is tissue-type plasminogen activator. However, tissue plasminogen activator vasoactivity aggravates hypoxia/ischemia-induced impairment of cerebrovasodilation in response to hypercapnia and hypotension in newborn pigs. Mitogen-activated protein kinase (a family of 3 kinases, extracellular signal-related kinase, p38, and c-Jun-N-terminal kinase) is upregulated after hypoxia/ischemia. Coupling of tissue plasminogen activator to red blood cells prevented hypoxia/ischemia-induced impairment of dilation and suppressed extracellular signal-related kinase mitogen-activated protein kinase activation. This study investigated the differential roles of mitogen-activated protein kinase isoforms in the effects of red blood cells-tissue plasminogen activator on cerebrovasodilation in a translationally relevant injury model, photothrombosis. Prospective, randomized animal study. : University laboratory. Newborn (1- to 5-day-old) pigs. Cerebral blood flow and pial artery diameter were determined before and after photothrombotic injury (laser 532 nm and erythrosine B) was produced in piglets equipped with a closed cranial window. Cerebral blood flow extracellular signal-related kinase, p38, and c-Jun-N-terminal kinase mitogen-activated protein kinase were determined by enzyme-linked immunosorbent assay. Tissue plasminogen activator and red blood cells-tissue plasminogen activator alleviated reduction of cerebral blood flow after photothrombotic injury. Cerebrovasodilation was blunted by photothrombotic injury, reversed to vasoconstriction by tissue plasminogen activator, but dilation was maintained by red blood cells-tissue plasminogen activator. Cerebral blood flow c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase but not extracellular signal-related kinase mitogen-activated protein kinase was elevated by photothrombotic injury, an effect potentiated by tissue plasminogen activator. Red blood cells-tissue plasminogen activator blocked c-Jun-N-terminal kinase but potentiated p38 mitogen-activated protein kinase upregulation after photothrombotic injury. A c-Jun-N-terminal kinase mitogen-activated protein kinase antagonist prevented, a p38 mitogen-activated protein kinase antagonist potentiated, whereas an extracellular signal-related kinase mitogen-activated protein kinase antagonist had no effect on dilator impairment after photothrombotic injury. These data indicate that in addition to restoring perfusion, red blood cells-tissue plasminogen activator prevents impairment of cerebrovasodilation after photothrombotic injury through blockade of c-Jun-N-terminal kinase and potentiation of p38 mitogen-activated protein kinase. These data suggest tissue plasminogen activator coupling to red blood cells offers a novel approach to increase the benefit/risk ratio of thrombolytic therapy to treat central nervous system ischemic disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.