Abstract

To reduce environmental threats, such as land filling, incineration and soil pollution, which are associated with the improper waste management of waste printed circuit boards, the utilization of NMPCBs from waste PCBs as a filler in composites was pursued. Untreated and treated NMPCBs in varying ratios, 10–30 wt.%, were blended with PVC to produce NMPCB/PVC composites, using the melt-mixing method via an internal mixer, in order to solve the remaining NMPCB waste problem after the valuable metals in PCBs were recovered. The incorporation of the NMPCB with PVC resulted in an increase in the tensile modulus and the thermal stability of the resulting composites. Scanning electron microscopy (SEM) results indicated improved interfacial adhesion between the treated NMPCB and the PVC matrix. The FTIR results of the NMPCB treated with 3-glycidyloxypropyltrimethoxysilane (GPTMS) revealed the formation of Si-O-Si bonds. The densities of the composites were found to increase with an increase in the content of the treated NMPCB, and compatibility improved. The tensile properties of the treated NMPCB/PVC composites were higher than those of the untreated NMPCB/PVC composites, suggesting improved compatibility between the treated NMPCB and PVC. The PVC composite with 10 wt.% of the treated NMPCB showed the optimum tensile properties. It was observed that the tensile modulus of the treated NMPCB/PVC composite increased by 47.65% when compared to that of the neat PVC. The maximum thermal degradation temperature was 27 °C higher than that of the neat PVC. Dynamic mechanical analysis results also support the improved interfacial adhesion as a result of the improvement in the storage modulus at the glassy region, and the loss factor (tan δ) peak shifted to a higher temperature range than that of the PVC and the untreated NMPCB/PVC composite. These studies reveal that the NMPCB was successfully modified with 1 wt.% of GPTMS, which promoted the dispersion and interfacial adhesion in the PVC matrix, resulting in better tensile properties and better thermal stability of the PVC composite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.