Abstract
AbstractThe effects of particle size and surface treatment of CaCO3 particles on the microstructure and mechanical properties of poly(vinyl chloride) (PVC) composites filled with CaCO3 particles via a melt blending method were studied by SEM, an AG‐2000 universal material testing machine and an XJU‐2.75 Izod impact strength machine. The tensile and impact strengths of CaCO3/PVC greatly increased with decreasing CaCO3 particle size, which was attributed to increased interfacial contact area and enhanced interfacial adhesion between CaCO3 particles and PVC matrix. Titanate‐treated nano‐CaCO3/PVC composites had superior tensile and impact strengths to untreated or sodium‐stearate‐treated CaCO3/PVC composites. The impact strength of titanate‐treated nano‐CaCO3/PVC composites was 26.3 ± 1.1 kJ m−2, more than three times that of pure PVC materials. The interfacial adhesion between CaCO3 particles and PVC matrix was characterized by the interfacial interaction parameter B and the debonding angle θ, both of which were calculated from the tensile strength of CaCO3/PVC composites. Copyright © 2005 Society of Chemical Industry
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have