Abstract

The effect of recycling on the thermo-mechanical and water absorption behavior of polypropylene (PP)/sisal fiber and polylactic acid (PLA)/sisal fiber composites were studied. The PP-based non-biodegradable composites and PLA-based biodegradable composites were recycled for four times. The effect of recycling was determined by examining the morphology, thermo-mechanical properties, and water absorption behavior and the obtained results were compared. The results showed that the incorporation of sisal fibers in the PP and PLA matrix enhances the tensile modulus and percentage crystallinity of the composites. The tensile strength and modulus of the sisal fiber reinforced PP composites were not affected with recycling. Even though the tensile properties of PLA and PLA/sisal fiber reinforced composites are superior to PP and PP/sisal fiber composites, the PLA-based composites show a dramatic decrease in tensile strength and modulus after the first recycling due to the degradation of the polymer. The thermal stability of the PP/sisal fiber composites was not affected by the repeated recycling process. On the other hand, the PLA-based composites with higher sisal fiber content show a bit lower thermal stability after recycling. The PP-based composites show fluctuations in percentage crystallinity with recycling. On the other hand, a remarkable increase in percentage crystallinity for PLA and PLA-based composites was observed with increasing recycling times. Water diffusion study divulges that the diffusion of water into the polymer composites was reduced with recycling, irrespective of the polymer matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.