Abstract
The Li-ion batteries are the main power source for the high technology devices, such as mobile phones and electric vehicles. Because of that, the number of spent Li-ion batteries significantly increases. Today, the number of active mobile phones crossed 7.19 billion. It is estimated that the mass of the spent lithium ion batteries in China will exceed 500,000 t by 2020. The trouble is in the ingredients of these batteries. They contain Li, Co, Mn, Ni, Cu, Al and toxic and flammable electrolytes which have a harmful affection to the environment. Because of that, the recycling procedure attracts raising attention of researches. Several commercial spent Li-ion batteries were recycled by the relatively fast, economic and simple procedure. The three ways of separating the cathode material from Al collector were examined after the manual dismantling of the components of batteries with the Li(Co?Mn?Ni)O2 as cathode material. These were: 1. dissolution of the Al collector in the alkali medium, 2. peeling off with N-methylpyrrolidone and 3. thermal decomposition of the adhesive at 700?C. The procedure with the highest yield was the one with the dissolution in alkali medium. The chemical analysis of the single batteries'' components (the crust, Al/Cu collector, cathode material) were done by the atomic absorption spectrometry. The components, before the analysis, were dissolved. The re-synthesis of the cathode material by the method of the citrate gel combustion was done after the separating the cathode material and dissolving it in the nitric acid. The obtained product was, after annealing, characterized by the methods of X-ray diffraction and Raman spectroscopy. The recycled product was LiCo0.59Mn0.26Ni0.15O2 stoichiometry, with the hexagonal layered structure ?-NaFeO2 type. The functionalization of the resynthesized material was examined in the 1 M solution LiClO4 in the propylene carbonate, by galvanostatic charging, with the current density of 0.7C. The recycled material showed relatively good capacities of charging and discharging which are 94.9 i 64.8 mA h g?1, respectively.
Highlights
Masa ugljenika na katodnom materijalu je određena merenjem mase katodnog materijala pre i posle žarenja na 700 °C
Višak NMP je uklonjen isparavanjem na peščanom kupatilu na 250 °C u toku 3 h, dok je ugljenik spaljen žarenjem u atmosferi O2 na 700 °C u trajanju od 24 h
Dobijeni gel je temperaturski tretiran na 250 °C kada dolazi do naglog sagorevanja limunske kiseline [21], a rezultujući proizvod se javlja u vidu voluminoznog praha koji zauzima čitavu zapreminu reakcionog prostora
Summary
Li-jonske baterije danas dominiraju u polju visoke tehnologije (mobilni telefoni, prenosni elektronski uređaji i sl.), a veliki napori se ulažu da se prilagode za napajanje energijom električnih automobila. Postoji nekoliko kompanija u svetu kao što su AEA Technology (UK), SNAM (Francuska), Toxco (Kanada), Umicore (Belgija) koje su razvile proces reciklaže metala iz katode istrošenih litijum jonskih baterija [8]. U poređenju sa velikim brojem istraživanja u pogledu recikliranja metala [1,5,7,8,9], u literaturi postoji vrlo mali broj radova koji se bave resintezom katodnog materijala iz katode istrošenih Li-jonskih baterija i evaluacijom njegovog ponovnog korišćenja. Termalnog i hidrometalurškog procesa reciklaže Co i Li iz istrošenih baterija, Lee i ostali [11] su prvi primenili sol-gel citratni postupak da resintetišu LiCoO2 u cilju ponovnog korišćenja kao katodnog materijala.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.