Abstract
Crushed waste rocks can be used as materials for backfilling goafs, so as to achieve the simultaneous goals of processing solid waste and controlling surface subsidence; however, particle size distribution directly affects the compaction of crushed waste rocks. Therefore, by employing a self-designed bidirectional loading test system for granular materials, this study tested compaction characteristics of crushed waste rocks with four different particle size distributions. Moreover, this research tested the changes of parameters in lateral and axial loading of crushed waste rocks and analysed the influence of particle size distribution on lateral strain, axial strain, porosity, lateral stress, and lateral pressure coefficient during compaction. The test results show that (1) particle size distribution affects porosity, strain, and lateral pressure coefficient of crushed waste rocks under lateral and axial loading. (2) For the samples under particle size distribution ranging from 0 to 10mm, the initial porosity is low and deformations are small under axial loading, so that particles can make contact and bear effective stress in grain-grain contact. Therefore, more stress is transferred to the lateral direction. (3) After compaction, the curves of the samples of crushed waste rocks under four particle size distributions all shift upwards in comparison with those before compaction, indicating that particles are crushed and the proportion of small particles constantly increases. (4) A reasonable particle size distribution can significantly improve stress characteristics, reduce crushing of particles in the samples, and increase the stiffness of the samples, so as to achieve better compaction effects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have