Abstract

We present a new method for the total functional recycling of alginate-based composite materials made via ionotropic gelation. The original material, an alginate/fiberglass foam with thermal insulation characteristics, was produced following a patented process in which fiberglass waste is embedded into the polyanionic gel matrix, and the resulting compound is then freeze-dried. The functional recycling is carried out by disassembling the ionic matrix – which is initially formed by the interaction between a cation (e.g. calcium) and the negatively charged alginate backbone – with the use of a chelator (Ethylenediaminetetraacetic acid disodium salt) with a high affinity for the cations, thus obtaining a homogeneous solution. An ionotropic gel can then be re-formed upon deactivation of the chelating activity under mild acid conditions. We managed to maintain or improve the thermal, mechanical and acoustic performances of the original material and we successfully tested the possibility of multiple recycling cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.