Abstract
Recycled rubber waste (RW) is produced at an alarming rate due to the deposition of 1.5 billion scrap tires annually around the globe, which causes serious threats to the environment due to its open land filling issues. This study investigates the potential application of RW in concrete structures for mitigating the alkali–silica reaction (ASR). Various proportions of RW (5%, 10%, 15%, 20%, and 25%) partially replaced the used aggregates. RW was procured from a local rubber recycling unit. Cubes, prisms, and mortar bar specimens were prepared using a mixture design recommended by ASTM C1260 and tested for evaluating the compressive and flexural strengths and expansion in an ASR conducive environment for specimens incorporating RW. It was observed that the compressive and flexural strength decreased for specimens incorporating RW compared to that of the control specimens without RW. For example, an 18% and an 8% decrease in compressive and flexural strengths, respectively, were observed for specimens with 5% of RW by aggregates volume at 28 days. Mortar bar specimens without RW showed an expansion of 0.23% and 0.28% at 14 and 28 days, respectively, indicating the potential ASR reactivity in accordance with ASTM C1260. A decrease in expansion was observed for mixtures incorporating RW. Specimens incorporating 20% of RW by aggregate volume showed expansions of 0.17% at 28 days, within the limit specified by ASTM C1260. Moreover, specimens incorporating RW showed a lower reduction in compressive and flexural strengths under an ASR conducive environment compared to that of the control specimen without RW. Micro-structural analysis also showed significant micro-cracking for specimens without RW due to ASR. However, no surface cracks were observed for specimens incorporating RW. It can be argued that the use of RW in the construction industry assists in reducing the landfill depositing issues with the additional benefit of limiting the ASR expansion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.