Abstract

ABSTRACT Recycled polyvinyl chloride (PVC) microplastics have been detected in the aquatic environment. These recycled microparticles contain chemicals that are released into the environment reaching different organisms. Although the problem of the presence of recycled PVC microparticles in the environment is evident, the toxicological consequences of this contaminant to exposed organisms remains to be better determined. The aim of this study was to investigate the toxicity attributed to exposure to environmentally relevant concentrations of recycled PVC microplastics in adult zebrafish (Danio rerio). The experimental groups were: negative control, vehicle control, positive control, and recycled microplastics (20 ± 5 μm) at 5, 10 or 20 μg/L. Zebrafish (D. rerio) were exposed to respective treatments for 96 hr. Locomotion and oxidative status parameters were measured and mortality recorded. The positive control group presented increased mortality rates and decreased locomotor activity. Animals from the vehicle group did not show marked differences. Finally, no significant disturbances were found in survival rate, locomotion pattern and oxidative status of animals exposed to recycled PVC microparticles at 5, 10 or 20 μg/L. Taken together our results suggest that recycled PVC microplastics in this particle size range do not appear to exert harmful effects on exposed adult D. rerio. However, these results need to be carefully observed due to limitations including size of particle and duration of exposure parameters that might affect ecological consequences. It is suggested that additional studies applying other particles sizes and chronic exposure are needed to more comprehensively verify the toxicity of the contaminant investigated here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.