Abstract

A three-dimensional (3D) substrate was developed by assembling a monolayer of graphitic carbon nitride (O-g-C3N4) on Ag nanorod arrays (Ag NRs) for sensitive and recyclable surface enhanced Raman scattering (SERS) detection. The prepared Ag NRs/O-g-C3N4 substrate not only generated a significant Raman enhancement effect as a result of the strong π-π stacking interaction between O-g-C3N4 and the analytes but also possessed excellent self-cleaning property via visible-light irradiation that was attributed to its outstanding catalytic performance. Highly sensitive SERS detection could be achieved with a LOD of 8.2 × 10-10 M for R6 G, and the substrate could be used repeatedly for at least four cycles with tolerable intensity attenuation. In addition, the 3D substrate exhibited long-term stability originating from the electron-donor effect of O-g-C3N4 and high reproducibility due to the uniform decoration of O-g-C3N4 on the Ag NRs through the strong interaction. Furthermore, using Ag NRs/O-g-C3N4, the recyclable detection of antibiotics in a water sample was demonstrated with high sensitivity, which indicates that the 3D Ag NRs/O-g-C3N4 substrate is a promising candidate for eliminating the challenges of single-use SERS substrates and building a portable SERS platform to sense organic molecular species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.