Abstract

Recyclable coherent random lasers assisted by plasmonic nanoparticles in DCM-PVA thin films are studied. Four DCM-PVA films with different nanoparticles are made, and the radiation characteristics of these random lasers are studied. The results show that the emission spectrum of the DCM-PVA film with Au nanoparticle of 50 nm in diameter is optimal, and its threshold is about 6.53 µJ/pulse. Underlying mechanisms are discussed in detail. Then the DCM-PVA film with Au nanoparticles of 50 nm in diameter is detached from a glass substrate and adhered to different substrates. Coherent random lasers also occur when the sample is based on different substrates. Finally, a method of making samples recyclable is proposed, and the emission spectrum of samples as a function of cycle index is studied. The results show that recyclable coherent random lasers can be realized with this method. This study provides a new way, to the best of our knowledge, to realize recyclable coherent random lasers with low-threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.