Abstract

Solvent-based and mechanical recycling technology approaches were compared with respect to each process's decontamination efficiency. Herein, post-consumer polystyrene (PS) feedstock was recycled by both technologies, yielding recycled PS resins (rPS). The process feedstock was subjected to four recycling cycles in succession to assess the technology perennity. The physico-chemical and mechanical properties of the rPS were then evaluated to discern the advantages and drawbacks of each recycling approach. The molecular weight of the mechanically recycled resin was found to decrease by 30% over the reprocessing cycles. In contrast, the solvent-base recycling technology yielded a similar molecular weight regarding the feedstock. This consistency in the rPS product is critical for consumer applications. Further qualitative and quantitative analyses on residual organic compounds and inorganic and particulate contaminants were investigated. It was found that the solvent-based technology is very efficient for purifying deeply contaminated feedstock in comparison to mechanical recycling, which is limited to well-cleaned and niche feedstocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.