Abstract
This paper explores recursive prediction and likelihood evaluation techniques for periodic autoregressive moving‐average (PARMA) time series models. The innovations algorithm is used to develop a simple recursive scheme for computing one‐step‐ahead predictors and their mean squared errors. The asymptotic form of this recursion is explored. The prediction results are then used to develop an efficient (and exact) PARMA likelihood evaluation algorithm for Gaussian series. We then show how a multivariate autoregressive moving average (ARMA) likelihood can be evaluated by writing the multivariate ARMA model in PARMA form. Explicit calculations for PARMA(1, 1) models and periodic autoregressions are included.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.