Abstract

This paper presents a constructive neural network model for seasonal streamflow forecasting. This surface water hydrology is basic to the design and operation of the reservoir. A good example is the operation of a reservoir with an uncontrolled inflow but having a means of regulating the outflow. If information on the nature of the inflow is determinable in advance, then the reservoir can be operated by some decision rule to minimize downstream flood damage. For this reasons, several companies in the Brazilian Electrical Sector use the linear time-series models such as PARMA (Periodic Auto regressive Moving Average) models developed by Box-Jenkins. This paper provides for river flow prediction a numerical comparison between neural networks, called nonlinear sigmoidal regression blocks networks (NSRBN) and PARMA models. The model was implemented to forecast weekly average inflow on an step-ahead basis. It was tested on four hydroelectric plants located in different river basins in Brazil. The results obtained in the evaluation of the performance of NSRBN were better than the results obtained with PARMA models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.